
www.angewandte.org

2009-48/23

Carbonylative Coupling

M. Beller and co-workers

Hydrocarboxylation of Allenes

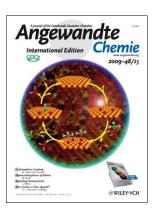
M. North

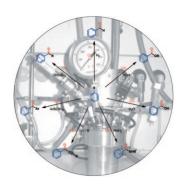
Exploding Nanoparticles

L. Dähne

Zinc Cluster or Zinc ligands?

D. L. Kays and S. Aldridge

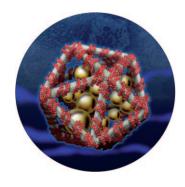

Submit


CHEMCATCHEM

Cover Picture

Bingjun Xu, Xiaoying Liu, Jan Haubrich, Robert J. Madix, and Cynthia M. Friend *

Atomic oxygen adsorbed on metallic gold promotes the low-temperature transformation of methanol to methyl formate, formaldehyde, and formic acid. The reactions occur with oxygen-containing gold nanoparticles (ca. 2 nm in diameter), which form when Au(111) is oxidized with ozone. The detailed reaction mechanism is discussed by C. M. Friend and co-workers in the Communication on page 4206 ff.



Carbonylative Coupling

M. Beller and co-workers describe in their Review on page 4114 ff. the newest developments in the palladium-catalyzed carbonylation of aryl halides and related substrates. The substrate spectrum of this approach and a series of applications are introduced.

DNA Technology

In their Communication on page 4137 ff., Y. Krishnan and co-workers show how gold nanoparticles can be encapsulated from solution by the amalgamation of DNA modules that form icosahedra.

Excited-State Structures

The use of time-resolved X-ray scattering measurements to study bimolecular reactions occurring on very short time scales in solution is reported in the Communication by N. Harrit, M. M. Nielsen, and co-workers on page 4180 ff.